
HOW TO BECOME A SERIAL KILLER

(A Hacker's Guide to Reverse Engineering Serial Number
Algorithms)

by =-BOOK-WORM->

If you've ever cracked an application before, you can understand
the thrill of the quest, but if you've gone as far as figuring
out how serial numbers can be generated, it puts you more into
the mind frame of a secret agent, code breaking for the FBI. In
some cases it truly presents some of the toughest puzzles you'll
ever encounter (except for perhaps, the "Rubik's Cube"). There
is only one quality that is a must-have here....DETERMINATION! I
can not stress that enough. If you're not willing to put some

time into it, stop reading right now! So the magic word for
today folks is??? - DETERMINATION!!!

My intentions for writing this article are to provide steps and
examples for those who already possess the following skills:

- Knowledge in using a debugger (My favorites in order: TMON,
Jasik's, MacsBug)
- Macintosh 68k assembler (As long as you have a manual, you
should be OK)
- Bitwise operations (OR, AND, XOR, etc...)
- Basic Algebra (Ha! And you thought you'd never use it!)
- Determination (The magic word)

(Skills in operating a printer, doodling on paper, etc... are
already assumed.)

I will be using "sn" to refer to serial number, registration
code, etc... throughout this text.

THE FOUR QUESTIONS
==================

Only four questions need to be answered in solving each case:

1. Where is it?
2. What does it do?
3. How can it be reversed?
4. Do the generated numbers work?

Knowing this, we will explore each question in detail.

1. WHERE IS IT?
===============

Finding the routine can often be a challenge. Luckily, the
_GetIText trap will solve this question for you more often than
not. In most cases, each field in the dialog box will have a
separate _GetIText issued to retrieve its contents. The
following technique can be used in these instances:

Technique 1

* Get to the application's registration screen
* Enter debugger
* Set a trap for _GetIText
* Exit the debugger
* Type something in all non-sn fields
* Type "1234567890" into the sn field
* Press "OK" (or equivalent)
(At this point you should enter the debugger. If not, read
further for other techniques.)
* View the contents of the area pointed to by register A1
* If it contains "1234567890", start single stepping
* If it does not, continue execution until it does, then start
single stepping

When starting to learn, you should single step the entire way
from this point. As you become more experienced, you'll learn
time saving skills by identifying specific library routines like
"pascal to C string" functions which you may simply jump over.

In more challenging situations where _GetIText is not used, you
may need to trap _TEKey. If pressing the return key is permitted
in lieu of the mouse click to accept the input, use:

Technique 2

* Get to the application's registration screen
* Type something in all non-sn fields
* Type "1234567890" into the sn field
* Enter debugger
* Set a trap for _TEKey
* Exit the debugger
* Press return
(At this point you should enter the debugger)
* Start single stepping

If a mouse click is needed to accept the input, use:

Technique 3

* Get to the application's registration screen
* Type something in all non-sn fields
* Type "123456789" into the sn field
* Enter debugger
* Set a trap for _TEKey
* Exit the debugger
* Type "0"
(At this point you should enter the debugger)

* Start single stepping

Each case is different. In some cases, the developer may be
generating a checksum "as you type" and therefore Techniques 2 or
3 are necessary. In most others, he checks after you press
return where Techniques 1 and 2 would suffice. Following code
after a _TEKey can be tedious. I often set breakpoints to
_BlockMove after I return from a _TEKey break. Next, I check the
area pointed to by register A0 after each _BlockMove is
encountered until I find the sn which I entered. Sometimes you
get lucky and can treat a _BlockMove break like a _GetIText break
from there.

Other techniques involve trapping _ModalDialog and finding where
it will go when the user presses OK. I rarely use that technique
anymore as there may be user functions attached to _ModalDialog
which process each keystroke and if not, _GetIText will put you
further into the code.

"Where is it?" can be defined as "Where does it first reference
anything I've typed into the dialog box?". The sure-fire way to
find it is to maintain the single stepping up to that point.

I'll be using Knot 3.6 as an example as its sn routine is not too
extensive but still requires some thinking in its reversal. The
following code is found after using Technique 1 (and many single
steps later):

 MOVEA.L 8(A7),A0

 PUSH #1 ; = StringToNum

 _Pack7

 MOVEA.L 4(A7),A0

 MOVE.L D0,(A0)

This is the first occurrence of reference to the sn. Here it
converts the sn string into a number for further processing. Now
we're ready to proceed to question number two.

2. WHAT DOES IT DO?
===================

The following are favorites to developers in checking your sn:

* Is the length correct?
* Does it contain specific characters at predefined locations?
* Does a calculation on some part of it result in the another
part?
* Does a calculation on other fields result in a part of it?
* Does a lookup table on one part result in another?
* Who cares what the user types? (mission accomplished!)

This is the step where you need to get out your number two
pencils and tablet of paper. As you single step through the
code, you must write down all that happens. I tend to use tree
diagrams stemming from the sn which I write at the top of the
page with separation between each character. Sometimes I need to
draw arrows showing characters which are swapped. Sometimes I
write replacement characters above them. Many times I have lines
streaming down each character, or set of characters, resembling
long term division but involving bitwise and/or other operators.
Use whatever works best for you but be sure to take down
everything in a format legible at least to yourself, or you'll be
sorry later.

Upon cruising through the code past the initial string-to-number
routine, we find this:

 PEA vjb_2(A6)
 JSR ITSGOOD ; jump somewhere
 POP.B D0 ; retrieve the result code
 BEQ.S ljb_2 ; if result code = 0, jump to
error alert
 SUBQ #2,A7
 PEA vjb_2(A6)
 PEA glob66(A5)
 CLR.L -(A7)
 JSR GETPREFS
 POP.B D0
 MOVE.B D0,vjb_1(A6)
 MOVE.B #1,glob43(A5)
 SUBQ #2,A7
 PUSH #$80
 PEA 0
 _Alert ; (alertID:INTEGER; filterProc:ProcPtr):INTEGER
 POP D0
 EXT.L D0
 MOVE.L D0,vjb_2(A6)

 PUSH.L $2988(A5)
 JSR DO_CLOSE
 BRA.S ljb_3
ljb_2 SUBQ #2,A7
 PUSH #$81
 PEA 0
 _Alert ; (alertID:INTEGER; filterProc:ProcPtr):INTEGER

At this point we know that "ITSGOOD" must NOT return a zero.
Now let's see what lurks inside "ITSGOOD":

ITSGOOD LINK A6,#0
 PUSH.L A2
 MOVEA.L param1(A6),A2
 CLR.B funRslt(A6) ; Assume an invalid sn (prime
a zero)
 TST.L (A2) ; Rule 1
 BEQ.S liy_1 ; "
 MOVE.L (A2),D0 ; Rule 2
 ANDI.L #$100,D0 ; "
 TST.L D0 ; "
 BNE.S liy_1 ; "
 CMPI.L #$186A0,(A2) ; Rule 3
 BLT.S liy_1 ; "
 MOVEQ #31,D0 ; Rule 4
 AND.L (A2),D0 ; "
 ADDI.L #$4531,D0 ; "
 MOVE.L D0,D1 ; "
 MOVE.L (A2),D0 ; "
 JSR proc13 ; " ==> proc13
 CMPI.L #$9D,D0 ; Rule 4 continued
 BNE.S liy_1 ; "
 MOVE.B #1,funRslt(A6) ; All checks are valid!
liy_1 POP.L A2
 UNLK A6
 POP.L (A7)
 RTS

proc13 TST.L D1 ; Rule 4 continued
 BGE.S lao_1 ; "
 NEG.L D1
lao_1 TST.L D0 ; "
 BLT.S lao_2 ; "
 JMP proc12 ; " ==> proc12
lao_2 NEG.L D0
 JSR proc12
 NEG.L D0

 RTS

proc12 MOVEM.L D2-D3,-(A7) ; Rule 4 continued
 MOVEQ #2,D2 ; "
 JMP data11-2(D2.W*2) ; " ==> data11

data11 BRA.S lan_1 ; Rule 4 continued
 DIVUL.L D1,D1:D0 ; "
 MOVE.L D1,D0 ; "
 MOVEM.L (A7)+,D2-D3 ; "
 RTS ; " ==> return back to
ITSGOOD

In viewing the code, we can now construct a set of rules which
must be met for proper sn validation:

Rule 1 : sn must NOT be a zero
Rule 2 : (sn & $100) = 0
Rule 3 : sn >= $186A0
Rule 4 : sn MOD ((sn & 31) + $4531) = $9D

Now we are ready to answer question three.

3. HOW CAN IT BE REVERSED?
==========================

This question rarely has the same answer. I've seen quite a few
different techniques used in sn checksumming. The main thing to
remember here is, good notes = success. I find it useful at this
point to take a deep breath, view my notes, and ask myself
"why?". Why is it flipping every 5th bit or why does it repeat a
certain pattern over and over again? In answering these
questions, you may find a simple way to repeat that capability in
a more simplistic form. Another thing to keep in mind is that
there are often multiple ways to derive the same sn. I will
demonstrate this by providing two separate routines for reversing
the Knot sn checksum.

In viewing the rules which were derived from question two, we
find that rule 3 will allow us to disregard rule 1. Rule 4 is
the toughest one and will require us to dust off our old algebra
books for solutions to simplification or take the easy way out.
First let's try the easy way, or better described as the "brute
force" method:

FOR sn = $186A0 TO mymaxno
 IF ((sn & $100)=0) AND (sn MOD ((sn & 31) + $4531)=$9D) THEN
PRINT sn
NEXT

Rule 1 : (Disregarded in lieu of rule 3)
Rule 2 : Applied in the first half of the "IF" statement
Rule 3 : Applied by the outer loop (sequentially increment sn
from $186A0)
Rule 4 : Applied in the second half of the "IF" statement

Although this method will work, it's slow. Trying every number
is never a good solution as the distance between valid numbers
may be great. So let's look a little deeper to find a better
solution.

Let's see now:

Rule 4 : sn MOD ((sn & 31) + $4531) = $9D

...is the same as saying:

Rule 4 : sn = x * ((sn & 31) + $4531) + $9D

Also, by sheer knowledge, we know that (sn & 31) can have only 32
possibilities (0-31). So let's reinstate the formula where "p"
may be any one of the 32 possibilities:

Rule 4 : sn = x * (p + $4531) + $9D

Now we can simply create an algorithm with nested loops. The
outer loop will control "x" and the inner loop will control each
iteration of "p" (0-31):

FOR x=1 TO mymaxno
 FOR p=0 TO 31
 sn = x * (p + $4531) + $9D
 IF sn >= $186A0 AND ((sn & $100) = 0) AND ((sn & 31) = p)
THEN PRINT sn
 NEXT
NEXT

Notice the last part of the "IF" statement. This is where we
verify that p does, in fact, equal (sn & 31).

Using this second approach greatly reduces the time needed to

generate numbers as we are skipping through all possibilities by
leaps and bounds.

Now we are ready to answer the final question.

4. DO THE GENERATED NUMBERS WORK?
=================================

This is the easiest question to answer as you can simply type
them in to check the results. I recommend trying the lowest and
highest sn followed by a few in between and a series "in a row".
If your notes and programming are good, they usually all work
fine. If there is a bug in your programming, they are usually
all wrong or the lower and/or upper limits are wrong.

In this case, after running both algorithms, we arrive at the
same results. There is, of course, a noticeable difference in
speed between them.

ENDING COMMENTS
===============

I've taken you on a journey through a simple situation. There
are, however, many more difficult routines being used in todays
sn checksums. You must keep in mind that nothing is impossible
through determination. No matter how you fold a piece of paper,
it's always possible to unfold it once again. Some folds may be
tucked in deep and difficult to pull out. There may be times you
encounter hundreds of folds. But no matter how much time is put
into folding that sheet of paper, someone else can always unfold
it. There's no reason why you can't be that person!

Let the puzzles begin,
=-BOOK-WORM->

